首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29206篇
  免费   3471篇
  国内免费   3797篇
化学   9021篇
晶体学   121篇
力学   2355篇
综合类   323篇
数学   13425篇
物理学   11229篇
  2024年   67篇
  2023年   297篇
  2022年   472篇
  2021年   675篇
  2020年   878篇
  2019年   831篇
  2018年   827篇
  2017年   990篇
  2016年   1153篇
  2015年   958篇
  2014年   1507篇
  2013年   2515篇
  2012年   1601篇
  2011年   1934篇
  2010年   1546篇
  2009年   2000篇
  2008年   2093篇
  2007年   2150篇
  2006年   1776篇
  2005年   1526篇
  2004年   1291篇
  2003年   1260篇
  2002年   1067篇
  2001年   869篇
  2000年   838篇
  1999年   715篇
  1998年   658篇
  1997年   531篇
  1996年   392篇
  1995年   346篇
  1994年   281篇
  1993年   246篇
  1992年   218篇
  1991年   200篇
  1990年   194篇
  1989年   172篇
  1988年   149篇
  1987年   145篇
  1986年   109篇
  1985年   130篇
  1984年   123篇
  1983年   66篇
  1982年   93篇
  1981年   93篇
  1980年   78篇
  1979年   77篇
  1978年   66篇
  1977年   68篇
  1976年   58篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
41.
ABSTRACT

The Coupled-Cluster (CC) theory is one of the most successful high precision methods used to solve the stationary Schrödinger equation. In this article, we address the mathematical foundation of this theory with focus on the advances made in the past decade. Rather than solely relying on spectral gap assumptions (non-degeneracy of the ground state), we highlight the importance of coercivity assumptions – Gårding type inequalities – for the local uniqueness of the CC solution. Based on local strong monotonicity, different sufficient conditions for a local unique solution are suggested. One of the criteria assumes the relative smallness of the total cluster amplitudes (after possibly removing the single amplitudes) compared to the Gårding constants. In the extended CC theory the Lagrange multipliers are wave function parameters and, by means of the bivariational principle, we here derive a connection between the exact cluster amplitudes and the Lagrange multipliers. This relation might prove useful when determining the quality of a CC solution. Furthermore, the use of an Aubin–Nitsche duality type method in different CC approaches is discussed and contrasted with the bivariational principle.  相似文献   
42.
Molecular rotors are a class of fluorophores that enable convenient imaging of viscosity inside microscopic samples such as lipid vesicles or live cells. Currently, rotor compounds containing a boron-dipyrromethene (BODIPY) group are among the most promising viscosity probes. In this work, it is reported that by adding heavy-electron-withdrawing −NO2 groups, the viscosity-sensitive range of a BODIPY probe is drastically expanded from 5–1500 cP to 0.5–50 000 cP. The improved range makes it, to our knowledge, the first hydrophobic molecular rotor applicable not only at moderate viscosities but also for viscosity measurements in highly viscous samples. Furthermore, the photophysical mechanism of the BODIPY molecular rotors under study has been determined by performing quantum chemical calculations and transient absorption experiments. This mechanism demonstrates how BODIPY molecular rotors work in general, why the −NO2 group causes such an improvement, and why BODIPY molecular rotors suffer from undesirable sensitivity to temperature. Overall, besides reporting a viscosity probe with remarkable properties, the results obtained expand the general understanding of molecular rotors and show a way to use the knowledge of their molecular action mechanism for augmenting their viscosity-sensing properties.  相似文献   
43.
A water circulation system with the almost same element composition and socket type was adopted in coral Acropora culture under different seawater pH value conditions and the data of the relationship between boron isotopic compositions of coral and seawater pH value by thermoelectric ionization mass spectrometer were obtained. According to the correlations between αcarb-3 of coral and the pH value of cultured seawater, αcarb-3 was not a constant but related to pH value, indicating that B(OH)3 also incorporated carbonate. Therefore, the theoretical formula could not be used to calculate the seawater pH value from the δ11Bcarb value of the measured marine biological carbonate. The empirical equations obtained experimentally would be an alternative method to calculate the seawater pH value. In addition, the mixed precipitation of CaCO3 and Mg(OH)2 was found in aquaculture tanks with high pH value, and the δ11B of the solid was significantly higher than that of cultured seawater. The result indicated that the presence of Mg(OH)2 had a significant effect on the boron isotope fractionation, which deserved our attention.  相似文献   
44.
Alkynes cycloaddition reactions are powerful tools for constructing cyclic molecules with optimal atom efficiency, but these reactions cannot proceed at ambient temperature without transition-metal catalysts. In this work, a heterobimetallic complex featuring an Nb–Fe triple bond, Nb(iPrNPMe2)3Fe–PMe3, has been evaluated as the potential catalyst for acetylene cycloaddition, using density functional theory. The calculated results show that the singlet-state (i.e. ground-state) Nb(iPrNPMe2)3Fe–PMe3 can be applied to benzene synthesis, but is not suitable for cyclobutadiene. Benzene can be obtained easily at room temperature and is the unique product on the singlet potential surface. The irradiation of infrared-red light can drive the excitation of singlet Nb(iPrNPMe2)3Fe–PMe3 to its triplet state. Both benzene and cyclobutadiene can be formed on the triplet reaction potential surface due to their low energy barriers. Therefore, Nb(iPrNPMe2)3Fe–PMe3 is a potential high reactivity heterobimetallic catalyst for the cyclotrimerization of alkynes. In the reaction process, the catalytic active site of Nb(iPrNPMe2)3Fe–PMe3 moves from niobium to iron.  相似文献   
45.
In a previous study (Stahl and Bredow, Chem. Phys. Lett. 2018, 695, 28–33), we have studied structural, energetic, and electronic properties of two vanadium dioxide VO2 polymorphs with modified global and range-separated hybrid functionals. Since hybrid methods are computationally demanding, we evaluate the computationally more efficient DFT + U method in the present study. We assessed the widely used Dudarev PBE + U approach with a literature value of the effective Hubbard parameter Ueff = 3.4 eV. We compared the PBE + U results for the two VO2 polymorphs with our previous results, a self-consistent hybrid functional sc-PBE0, and the meta-GGA functional SCAN. It was found that the PBE + U method yields a strongly distorted monoclinic phase and does not reproduce the metal-to-insulator transition of VO2 correctly, even with modified values of Ueff. On the other hand, sc-PBE0 and SCAN describe the relative stability and the electronic structure of both polymorphs correctly and also provide reasonable lattice parameters. The functional SCAN yields the optimal balance between computational efficiency and accuracy. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
46.
47.
48.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   
49.
50.
In this paper, the aeroelastic analyses of a rectangular cantilever plate of varying aspect ratio is presented. The classical plate theory has been selected as the structural model. The main point that distinguishes this study from previously reported research is employing Peters’ theory to model aerodynamic effect which is not straightforward. The Peters’ aerodynamic model was originally developed to provide lift and moment, which is only applicable to the structural model based on the beam theories. In this study, using the basic concept of the Peters’ aerodynamic model in addition to utilizing the Fourier series, the pressure distribution is derived, which makes Peters’ model applicable to structural models based on plate theory. This combination provides a much simpler state–space aeroelastic model for plates in comparison to the prevalent panel methods, which could lead to a significant reduction in computational time. In addition, the aeroelastic response of the plate with respect to changes in the structural model from the beam theory to the plate theory is evaluated. By using data from an experiment carried out at Duke University, the theoretical results are evaluated. Furthermore, the differences in structural models obtained from the plate and beam theories can be divided into two distinct parts, which are responsible for differences in bending and torsional behaviors of the structure, separately. This approach enables us to measure the effects of differences of each behavior separately, which could provide with a new insight into the problem. It has been determined that the flutter speeds obtained from the beam and plate aeroelastic models are little affected by the difference in bending behavior, but rather is mainly caused by the difference in torsional frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号